Developing a Complex Independent Component Analysis (CICA) Technique to Extract Non-stationary Patterns from Geophysical Time Series
نویسندگان
چکیده
منابع مشابه
Developing a Complex Independent Component Analysis (CICA) Technique to Extract Non-stationary Patterns from Geophysical Time Series
In recent decades, decomposition techniques have enabled increasingly more applications for dimension reduction, as well as extraction of additional information from geophysical time series. Traditionally, the principal component analysis (PCA)/empirical orthogonal function (EOF) method and more recently the independent component analysis (ICA) have been applied to extract, statistical orthogon...
متن کاملUsing Wavelets and Splines to Forecast Non-Stationary Time Series
This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...
متن کاملTime Series Forecasting Using Independent Component Analysis
The paper presents a method for multivariate time series forecasting using Independent Component Analysis (ICA), as a preprocessing tool. The idea of this approach is to do the forecasting in the space of independent components (sources), and then to transform back the results to the original time series space. The forecasting can be done separately and with a different method for each componen...
متن کاملIntroduction to Non - Stationary Time Series
Consider a univariate time series {yt}t=−∞. We say that {yt} is (strictly) stationary if the joint distribution of the vectors (yt1 , . . . , ytk) and (yt1+s, . . . , ytk+s) are the same for any choice of the subscripts (t1, t2, . . . , tk, s). Thus, in particular, the marginal distributions are identical, so Eyt = μ and V yt = σ 2 are independent of t, and furthermore covariances Cov (yt, yt+s...
متن کاملForecasting Non-Stationary Time Series: From Theory to Algorithms
Generalization bounds for time series prediction and other non-i.i.d. learning scenarios that can be found in the machine learning and statistics literature assume that observations come from a (strictly) stationary distribution. The first bounds for completely non-stationary setting were proved in [6]. In this work we present an extension of these results and derive novel algorithms for foreca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Surveys in Geophysics
سال: 2017
ISSN: 0169-3298,1573-0956
DOI: 10.1007/s10712-017-9451-1